Study Goal and Objective

Overarching goal: To improve health and equity in type 2 diabetes (T2D) by integrating social care into the clinical care of T2D, which will lead to a necessary paradigm shift in US health care delivery.

Objective: To develop **i2SOAR** (Intelligent and individualized social risk management in type 2 diabetes), an EHR-based platform including personalized social risk management algorithms that can support the social care during clinical care of T2D.

Recourses and Methods

- **OneFlorida** network, collating EHR data from 17 million (or 65%) residents in Florida, 2.1 million in Georgia, and 9,800 in Alabama, and linked with various other data sources such as Medicaid & Medicare claims and national death index.
- **External exposome database** with ~9,000 contextual social determinants of health (SDoH).
- Natural language processing (NLP) extracting person-level SDoH from clinical narratives in EHRs. The NLP pipeline is powered by GatorTron – the largest clinical language model trained on our state-of-the-art computing infrastructure – HIPerGator – features $50M new hardware from Nvidia customized for AI and deep learning.
- **Sate-of-the-Art causal AI causal** models developed by the study team.

![Image](image.png)

Fig. 1. 1-year hospitalization risk by iPsRS decile. X axis: iPsRS, stratified by top 1%, 2-5%, and 6-10%, and (deciles); Y axis: actual hospitalization rate.

Fig. 2. A causal DAG and with significant pathways (red, blue, and green) leading to racial disparities in the hospitalization risk.

Fig. 3. Subgroups CATE (i.e., heterogeneous effects) of housing instability on the hospitalization risk in T2D.

Fig. 4. Predicted ITE at person level of housing instability on the hospitalization risk in T2D.

Fig. 5. An initial design of the key features in i2SOAR.

- **Clinical Implications**
 - Through developing machine learning algorithms to build **i2SOAR**, our work will lead to the integration of social risk management into the clinical care of T2D:
 - Screen for patients’ unmet social needs via the iPsRS
 - Quantifying the SDoH effects on disparities
 - Identifying SDoH targets for interventions to mitigate identified social risks (informed by SDoH causal effect estimates)
 - Support the shared decision-making between the care team and patients on personalized intervention strategies to manage T2D patients’ social risk

Deliverables

- A fair machine learning-based individualized polysocial risk score (iPsRS) that considers both contextual and person-level SDoH (Fig.1).
- Identifying and quantifying the contributions of significant SDoH causal pathways that lead to T2D disparities (Fig.2).
- Using causal-principled AI methods to estimate the causal, heterogeneous effects of key actionable SDoH (e.g., housing instability, Fig.3 and Fig.4).
- An EHR-based i2SOAR platform that guides social risk management through user-centered design (Fig.5).

The initial user interface for the i2SOAR prototype developed based on a patient case: female, 53 y/o, White/Hispanic, 3-year history of T2D, medical history of diabetes retinopathy, hypertension, and obesity.